Search results for "electronic structure"

showing 10 items of 722 documents

Comparative theoretical study of the Ag–MgO (100) and (110) interfaces

1999

We have calculated the atomic and electronic structures of Ag–MgO(100) and (110) interfaces using a periodic (slab) model and an ab initio Hartree–Fock approach with a posteriori electron correlation corrections. The electronic structure information includes interatomic bond populations, effective charges, and multipole moments of ions. This information is analyzed in conjunction with the interface binding energy and the equilibrium distances for both interfaces for various coverages. There are significant differences between partly covered surfaces and surfaces with several layers of metal, and these can be understood in terms of electrostatics and the electron density changes. For complet…

(100) and (110) interfacesElectronic correlationChemistryBinding energyAb initioElectronic structureSurfaces and InterfacesElectrostaticsCondensed Matter PhysicsMolecular physicsSurfaces Coatings and FilmsCrystallographyAg–MgOAb initio quantum chemistry methodsImage interaction modelMonolayerAtomAdhesionMaterials ChemistryAdsorptionHartree–Fock methodSurface Science
researchProduct

First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides

2020

Valuable discussions with E. A. Kotomin are gratefully acknowledged. Research contribution of R. E. and A. I. P. has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications.” The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsAlkaline earth metalMaterials sciencePhysics and Astronomy (miscellaneous)F centerperovskitesGeneral Physics and AstronomyIonic bondingElectronic structure7. Clean energy01 natural sciencesCrystallographic defectCrystallographyAb initio quantum chemistry methodsVacancy defect0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Ab initio calculations010306 general physicsShallow donorPerovskite (structure)
researchProduct

Insights into Intrinsic Defects and the Incorporation of Na and K in the Cu2ZnSnSe4 Thin-Film Solar Cell Material from Hybrid-Functional Calculations

2016

We have performed density functional theory calculations using the HSE06 hybrid functional to investigate the energetics, atomic, and electronic structure of intrinsic defects as well as Na and K impurities in the kesterite structure of the Cu2ZnSnSe4 (CZTSe) solar cell material. We found that both Na and K atoms prefer to be incorporated into this material as substitutional defects in the Cu sublattice. At this site highly stable (Na–Na), (K–K), and (Na–K) dumbbells can form. While Na interstitial defects are stable in CZTSe, the formation of K interstitial defects is unlikely. In general, the calculated formation energies for Na-related defects are always lower compared to their K-related…

010302 applied physicsChemical substanceChemistryNanotechnology02 engineering and technologyElectronic structureengineering.material021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionHybrid functionalGeneral EnergyImpuritylawChemical physics0103 physical sciencesSolar cellengineeringDensity functional theoryKesteritePhysical and Theoretical Chemistry0210 nano-technologyScience technology and societyThe Journal of Physical Chemistry C
researchProduct

Comparative Theoretical Analysis of BN Nanotubes Doped with Al, P, Ga, As, In, and Sb

2013

SUMMARY AND CONCLUDING REMARKS We have performed large-scale first-principles calculations ofthe electronic structure of (5,5) boron nitride nanotubescontaining the following substitutional impurity atoms: Al, P,Ga, As, In, and Sb. Calculations have been performed using thetwo methods: (i) linear combination of atomic orbitals(LCAO) with the atomic-centered Gaussian-type functions asa basis set and (ii) linearized augmented cylindrical wave(LACW) accompanied with the local density functional andmuffin-tin approximations for the electronic potential. In arelatively good qualitative agreement, both methods predict lowformation energies and, thus, relative stability of point defectsthat are assoc…

010302 applied physicsChemistryBand gap02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBond lengthchemistry.chemical_compoundGeneral EnergyBoron nitrideLinear combination of atomic orbitals0103 physical sciencesDensity of statesPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyElectronic band structureBasis setThe Journal of Physical Chemistry C
researchProduct

Tailoring the anomalous Hall effect of SrRuO$_3$ thin films by strain: a first principles study

2021

Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$\%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$\%$…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed matter physicseducationGeneral Physics and AstronomyThermal fluctuationsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemMagnetizationCondensed Matter::Materials ScienceFerromagnetismHall effect0103 physical sciencesddc:530Orthorhombic crystal systemBerry connection and curvature0210 nano-technology
researchProduct

Dielectric response of BaTiO3 electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy

2021

Abstract For the first time, the dielectric response of a BaTiO 3 thin film under an AC electric field is investigated using microsecond time-resolved X-ray absorption spectroscopy at the Ti K-edge in order to clarify correlated contributions of each constituent atom on the electronic states. Intensities of the pre-edge e g peak and shoulder structure just below the main edge increase with an increase in the amplitude of the applied electric field, whereas that of the main peak decreases in an opposite manner. Based on the multiple scattering theory, the increase and decrease of the e g and main peaks are simulated for different Ti off-center displacements. Our results indicate that these s…

010302 applied physicsCondensed Matter - Materials ScienceX-ray absorption spectroscopyMaterials sciencePolymers and PlasticsAbsorption spectroscopyMetals and AlloysMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityMolecular physicsElectronic Optical and Magnetic MaterialsIonMicrosecondElectric field0103 physical sciencesAtomCeramics and Composites0210 nano-technologyActa Materialia
researchProduct

Electronic structure and magnetic order in Cu Zn(1−)O: A study GGA and GGA + U

2019

Abstract Based on density functional theory within GGA formalism, first-principles calculations were performed in order to study the structural, electronic, and magnetic properties of Cu-doped ZnO compound with dopant concentrations x = 0.028, 0.042, 0.056, and 0.125. It was found that CuxZn(1−x)O is ferromagnetic for both the closest and farthest impurity distances, but it is more stable energetically for the closest one. For all concentrations we obtained nearly half − metallic behavior. The calculations show that two substitutional Cu atoms introduce a magnetic moment of about 2.0 μB for all dopant concentrations. The results indicate that the magnetic ground state originates from the st…

010302 applied physicsMaterials scienceCondensed matter physicsDopantMagnetic momentSpins02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceFerromagnetismImpurity0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryElectrical and Electronic Engineering0210 nano-technologyGround statePhysica B: Condensed Matter
researchProduct

Half-Heusler materials as model systems for phase-separated thermoelectrics

2015

Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…

010302 applied physicsMaterials scienceCondensed matter physicsFermi energy02 engineering and technologySurfaces and InterfacesElectronic structureCubic crystal system021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhase (matter)0103 physical sciencesThermoelectric effectMaterials ChemistryDensity of statesElectrical and Electronic Engineering0210 nano-technologyElectronic band structurephysica status solidi (a)
researchProduct

Low-temperature luminescence of CdI2 under synchrotron radiation

2020

Synchrotron radiation is applied to study visible and UV luminescence spectra and their excitation spectra of undoped as well as In and Sb doped cadmium iodide crystals at 10 K. The origin of principal luminescence bands and the role of impurities in the formation of emission centers are discussed. The luminescence properties have been explained based on the electronic structure of CdI2 crystals.

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed Matter::OtherExcitation spectraDopingAnalytical chemistryPhysics::OpticsGeneral Physics and AstronomySynchrotron radiationLuminescence spectraElectronic structure01 natural sciences3. Good healthCondensed Matter::Materials Sciencechemistry.chemical_compoundCadmium iodidechemistryImpurityCondensed Matter::Superconductivity0103 physical sciencesCondensed Matter::Strongly Correlated Electrons010306 general physicsLuminescenceLow Temperature Physics
researchProduct

Ab initio calculations of the electronic structure for Mn2+-doped YAlO3 crystals

2020

The electronic structure of Mn2+ ion substituted for the host Y atom in orthorhombic bulk YAlO3 crystals has been calculated by means of hybrid exchange-correlation functional HSE within density functional theory. The supercell approach has been used to simulate in Pbnm YAlO3 crystal the point defects, Mn-dopant and compensated the F+ center (oxygen vacancy with one trapped electron), to make unit cell neutral. Large 2 × 2 × 2 supercells of 160 atoms allow us to simulate substitutional point defect with concentration of about 3%. Mn2+ ions substituting for host Y form covalent Mn–O bonds, in opposite to the mostly ionic Y–O bond. The F center inserted to compensate the Mn2+ dopant in YAlO3 …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)DopantBand gapGeneral Physics and AstronomyIonic bondingElectronic structure01 natural sciencesCrystallographic defectCrystalCrystallographyAb initio quantum chemistry methods0103 physical sciencesDensity functional theory010306 general physicsLow Temperature Physics
researchProduct